A model for cyclic mechanical reinforcement

نویسندگان

  • Zhenhai Li
  • Fang Kong
  • Cheng Zhu
چکیده

Mechanical force regulates a broad range of molecular interactions in biology. Three types of counterintuitive mechanical regulation of receptor-ligand dissociation have been described. Catch bonds are strengthened by constant forces, as opposed to slip bonds that are weakened by constant forces. The phenomenon that bonds become stronger with prior application of cyclic forces is termed cyclic mechanical reinforcement (CMR). Slip and catch bonds have respectively been explained by two-state models. However, they assume fast equilibration between internal states and hence are inadequate for CMR. Here we propose a three-state model for CMR where both loading and unloading regulate the transition of bonds among the short-lived, intermediate, and long-lived state. Cyclic forces favor bonds in the long-lived state, hence greatly prolonging their lifetimes. The three-state model explains the force history effect and agrees with the experimental CMR effect of integrin α5β1-fibronectin interaction. This model helps decipher the distinctive ways by which molecular bonds are mechanically strengthened: catch bonds by constant forces and CMR by cyclic forces. The different types of mechanical regulation may enable the cell to fine tune its mechanotransduction via membrane receptors.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thermoelastic Analysis of a Functionally Graded Simple Blade Using First-Order Shear Deformation Theory

In this article, the thermo-elastic behavior of a functionally graded simple blade subjected to the mechanical and thermal loadings is presented, applying a semi-analytical method and a variable thickness cantilever beam model. A specific temperature gradient is employed between the root and the edges of the beam. It is assumed that the mechanical and thermal properties are longitudinal directi...

متن کامل

Finite element analysis of fatigue damage in passenger-car diesel engine cylinder head under cyclic thermo-mechanical loadings

In this article, the thermo-mechanical fatigue lifetime of the cylinder head of a passenger-car diesel engine has been estimated. At the first stage, stress and strain distributions in the cylinder head have been calculated using the two-layer visco-plastic model, available in the ABAQUS software. The calibration of the model was performed, using correlating of simulated hysteresis curves and l...

متن کامل

Studying on the fatigue behavior of Al- Al2O3 metal matrix nano composites processed through powder metallurgy

Excellent mechanical properties and fatigue performance of Al/Al2O3 metal-based nanocomposites caused to introduce this material as a good candidate for various applications. In this regard, the preparation and characterization of this composite can be considered as a hot issue for research. The study was carried out in several steps including: (i) preparation of Al/Al2O3 metal-based nanocompos...

متن کامل

Cyclic Behavior of Beams Based on the Chaboche Unified Viscoplastic Model

In this paper, ratcheting behavior of beams subjected to mechanical cyclic loads at elevated temperature, using the rate dependent Chaboche unified viscoplastic model with combined kinematic and isotropic hardening theory of plasticity, is investigated. A precise and general numerical scheme, using the incremental method of solution, is developed to obtain the cyclic inelastic creep and plastic...

متن کامل

A Strain Range Dependent Cyclic Plasticity Model

Hysteresis loop curves are highly important for numerical simulations of materials deformation under cyclic loadings. The models mainly take account of only the tensile half of the stabilized cycle in hysteresis loop for identification of the constants which don’t vary with accumulation of plastic strain and strain range of the hysteresis loop. This approach may be quite erroneous particularly ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016